Statistical Process Control of Multivariate Processes
نویسنده
چکیده
With process computers routinely collecting measurements on large numbers of process variables, multivariate statistical methods for the analysis, monitoring and diagnosis of process operating performance have received increasing attention. Extensions of traditional univariate Shewhart, CUSUM and EWMA control charts to multivariate quality control situations are based on Hotelling's T 2 statistic. Recent approaches to multivariate statistical process control which utilize not only product quality data (Y), but also all of the available process variable data (X) are based on multivariate statistical projection methods (Principal Component Analysis (PCA) and Partial Least Squares (PLS)). This paper gives an overview of these methods, and their use for the statistical process control of both continuous and batch multivariate processes. Examples are provided of their use for analysing the operations of a mineral processing plant, for on-line monitoring and fault diagnosis of a continuous polymerization process and for the on-line monitoring of an industrial batch polymerization reactor.
منابع مشابه
Simultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملNew phase II control chart for monitoring ordinal contingency table based processes
In some statistical process monitoring applications, quality of a process or product is described by more than one ordinal factors called ordinal multivariate process. To show the relationship between these factors, an ordinal contingency table is used and modeled with ordinal log-linear model. In this paper, a new control charts based on ordinal-normal statistic is developed to monitor the ord...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملOn the non-parametric multivariate control charts in fuzzy environment
Multivariate control chats are generally used in situations where the simultaneous monitoring or control of two or more related quality characteristics is necessary. In most processes in the real world, distribution of the process characteristics are unknown or at least non-normal, so the non-parametric or distribution-free charts are desirable. Most non-parametric statistical process-control t...
متن کاملStep change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...
متن کاملA Generalized Linear Statistical Model Approach to Monitor Profiles
Statistical process control methods for monitoring processes with univariate ormultivariate measurements are used widely when the quality variables fit to known probabilitydistributions. Some processes, however, are better characterized by a profile or a function of qualityvariables. For each profile, it is assumed that a collection of data on the response variable along withthe values of the c...
متن کامل